2016-03-30 10 views
1

Temel SVM eğitimini yapmak için "sklearn.svm" kullanıyorum.Destek Vektör Makinesi (SVM) eğitiminden sonra tam model bilgileri nasıl çıkarılır?

enter image description here

from sklearn.svm import SVC 
clf = SVC(C=10.0,kernel='linear',probability=True,verbose=True) 
clf.fit(X, y_) 

NOT: Ben "get_params" ya da "set_params" ulaşılabilir parametreler söz etmiyorum SVC için, belgelerinde açıklanan Model ayrıntılarını yazdırmak için bir yol var . Algoritmanın sonucu olarak belirlenen gerçek katsayılara başvuruyorum. SVC belgelerine

cevap

0

:

Attributes: 

support_ : array-like, shape = [n_SV] 
    Indices of support vectors. 
    support_vectors_ : array-like, shape = [n_SV, n_features] 
    Support vectors. 

n_support_ : array-like, dtype=int32, shape = [n_class] 
    Number of support vectors for each class. 

dual_coef_ : array, shape = [n_class-1, n_SV] 
    Coefficients of the support vector in the decision function. For  
    multiclass, coefficient for all 1-vs-1 classifiers. The layout of 
    the coefficients in the multiclass case is somewhat non-trivial. 
    See the section about multi-class classification in the SVM 
    section of the User Guide for details. 

coef_ : array, shape = [n_class-1, n_features] 

     Weights assigned to the features (coefficients in the primal 
     problem). This is only available in the case of a linear 
     kernel. 

     coef_ is a readonly property derived from dual_coef_ and 
     support_vectors_. 

intercept_ : array, shape = [n_class * (n_class-1)/2] 
     Constants in decision function. 

bu model hakkında tüm bilgileri niteliklerini dan Sen türetebilirsiniz.

Örneğin: clf.n_support_, modelinizin n_support_ değerini döndürecektir.