Tam olarak daha iyi, ama alternatif bir yoludur olacak RDD'yi bir DataFrame'e dönüştürmek ve histogram_numeric
UDF'yi kullanmaktır.
Örnek veriler:
import scala.util.Random
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions.{callUDF, lit, col}
import org.apache.spark.sql.Row
import org.apache.spark.sql.hive.HiveContext
val sqlContext = new HiveContext(sc)
Random.setSeed(1)
val ncol = 5
val rdd = sc.parallelize((1 to 1000).map(
_ => Row.fromSeq(Array.fill(ncol)(Random.nextDouble))
))
val schema = StructType(
(1 to ncol).map(i => StructField(s"x$i", DoubleType, false)))
val df = sqlContext.createDataFrame(rdd, schema)
df.registerTempTable("df")
Sorgu: öneri
val nBuckets = 3
val columns = df.columns.map(
c => callUDF("histogram_numeric", col(c), lit(nBuckets)).alias(c))
val histograms = df.select(columns: _*)
histograms.printSchema
// root
// |-- x1: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
// |-- x2: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
// |-- x3: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
// |-- x4: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
// |-- x5: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- x: double (nullable = true)
// | | |-- y: double (nullable = true)
histograms.select($"x1").collect()
// Array([WrappedArray([0.16874313309969038,334.0],
// [0.513382068667877,345.0], [0.8421388886903808,321.0])])
Verme org.apache.spark.sql.AnalysisException: tanımlanmamış işlev histogram_numeric. Ben kıvılcım 1.5.1 kullanıyorum –
UDFs HiveContext gerektirir. – zero323
teşekkürler ... Cevabınızda değişken adını düzenledim. –