ile bir ANN yetiştirmek için birden fazla eğitim yöntemi kullanın Genetik Algoritmalar, Parçacık Sürtünme Optimizasyonu ve Simüle Tavlama ile ileriye doğru yayılma eğitimi kullanmadan önce bir besleme iletme nöral ağı eğitiminin sonucu iyileştirdiğini bilmek isterim. genel eğitimi geliştirme olmalıdır eğitim algoritmaları dizisidir Gördüğünüz gibiEncog
CalculateScore score = new TrainingSetScore(trainingSet);
StopTrainingStrategy stop = new StopTrainingStrategy();
StopTrainingStrategy stopGA = new StopTrainingStrategy();
StopTrainingStrategy stopSIM = new StopTrainingStrategy();
StopTrainingStrategy stopPSO = new StopTrainingStrategy();
Randomizer randomizer = new NguyenWidrowRandomizer();
//Backpropagation train = new Backpropagation((BasicNetwork) network, trainingSet, 0.2, 0.1);
// LevenbergMarquardtTraining train = new LevenbergMarquardtTraining((BasicNetwork) network, trainingSet);
int population = 500;
MLTrain trainGA = new MLMethodGeneticAlgorithm(new MethodFactory(){
@Override
public MLMethod factor() {
final BasicNetwork result = createNetwork();
((MLResettable)result).reset();
return result;
}}, score,population);
Date dStart = new Date();
int epochGA = 0;
trainGA.addStrategy(stopGA);
do{
trainGA.iteration();
if(writeOnStdOut)
System.out.println("Epoch GenetiC#" + epochGA + " Error:" + trainGA.getError());
epochGA++;//0000001
previousError = trainGA.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epochGA < (maxIterations/5) && !stopGA.shouldStop() && totsecs < (secs/3));
NeuralPSO trainPSO = new NeuralPSO((BasicNetwork) network, randomizer, score, 100);
int epochPSO = 0;
trainPSO.addStrategy(stopPSO);
dStart = new Date();
do{
trainPSO.iteration();
if(writeOnStdOut)
System.out.println("Epoch Particle Swarm #" + epochPSO + " Error:" + trainPSO.getError());
epochPSO++;//0000001
previousError = trainPSO.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epochPSO < (maxIterations/5) && !stopPSO.shouldStop() && totsecs < (secs/3));
MLTrain trainSIM = new NeuralSimulatedAnnealing((MLEncodable) network, score, startTemperature, stopTemperature, cycles);
int epochSA = 0;
trainSIM.addStrategy(stopSIM);
dStart = new Date();
do{
trainSIM.iteration();
if(writeOnStdOut)
System.out.println("Epoch Simulated Annealing #" + epochSA + " Error:" + trainSIM.getError());
epochSA++;//0000001
previousError = trainSIM.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epochSA < (maxIterations/5) && !stopSIM.shouldStop() && totsecs < (secs/3));
previousError = 0;
BasicTraining train = getTraining(method,(BasicNetwork) network, trainingSet);
//train.addStrategy(new Greedy());
//trainAlt.addStrategy(new Greedy());
HybridStrategy strAnneal = new HybridStrategy(trainSIM);
train.addStrategy(strAnneal);
//train.addStrategy(strGenetic);
//train.addStrategy(strPSO);
train.addStrategy(stop);
//
// Backpropagation train = new Backpropagation((ContainsFlat) network, trainingSet, 0.7, 0.3);
dStart = new Date();
int epoch = 1;
do {
train.iteration();
if(writeOnStdOut)
System.out.println("Epoch #" + epoch + " Error:" + train.getError());
epoch++;//0000001
if(Math.abs(train.getError()-previousError)<0.0000001) iterationWithoutImprovement++; else iterationWithoutImprovement = 0;
previousError = train.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epoch < maxIterations && !stop.shouldStop() && totsecs < secs);//&& iterationWithoutImprovement < maxiter);
: Burada
kullanıyorum kodudur.Lütfen mantıklı olup olmadığını ve kodun doğru olup olmadığını bildirin. Çalışıyor gibi görünüyor ama emin olmak istiyorum çünkü bazen GA tarafından kaydedilen ilerlemenin PSO'dan sıfırlandığını görüyorum.
Teşekkürler