Bu yöntem 3 vs ile daha sonra, sadece O(n)
yaşıyor
Unsigned func (unsigned n)
{
if (n ==0) return 1;
if(n==1) return 2;
\\do somthing(in O(1))
return 2*func(n-1);
}
Ancak peki ya bu:
Unsigned func (unsigned n)
{
if (n ==0) return 1;
if(n==1) return 2;
\\do somthing(in O(1))
return func(n-1) + func(n-1);
}
örnek fonksiyon (5) için en çok
5 -> 4 -> 3 -> 2 -> 1
daha sonra 2 döner aşağıdaki ilk olarak çalıştırır,
: Bu
O(n)
den
O(2^n)
pratik örneğini bu kodu deneyelim için büyük ölçüde karmaşıklığı değiştirmek ETMEZ nedenle
5 -> 4 -> 3 -> 2-> 1; 2-> 1; 3->2->1; etc.
gibi bütün süreci görünmesi için ama orada o "ikinci" bölümünü çalıştırır
public class Complexity {
private static int counter;
public static void main(String[] args) {
for (int i = 0; i < 20; i++) {
counter = 0;
func(i);
System.out.println("For n="+i+" of 2*func the number of cycles is " + counter);
counter = 0;
func2(i);
System.out.println("For n="+i+" of func + func the number of cycles is " + counter);
}
}
public static int func(int n) {
counter++;
if (n == 0) {
return 1;
}
if (n == 1) {
return 2;
}
return 2 * func(n - 1);
}
public static int func2(int n) {
counter++;
if (n == 0) {
return 1;
}
if (n == 1) {
return 2;
}
return func2(n - 1) + func2(n - 1);
}
}
olması bu çıkışı:
For n=0 of 2*func the number of cycles is 1
For n=0 of func + func the number of cycles is 1
For n=1 of 2*func the number of cycles is 1
For n=1 of func + func the number of cycles is 1
For n=2 of 2*func the number of cycles is 2
For n=2 of func + func the number of cycles is 3
For n=3 of 2*func the number of cycles is 3
For n=3 of func + func the number of cycles is 7
For n=4 of 2*func the number of cycles is 4
For n=4 of func + func the number of cycles is 15
For n=5 of 2*func the number of cycles is 5
For n=5 of func + func the number of cycles is 31
For n=6 of 2*func the number of cycles is 6
For n=6 of func + func the number of cycles is 63
For n=7 of 2*func the number of cycles is 7
For n=7 of func + func the number of cycles is 127
For n=8 of 2*func the number of cycles is 8
For n=8 of func + func the number of cycles is 255
For n=9 of 2*func the number of cycles is 9
For n=9 of func + func the number of cycles is 511
For n=10 of 2*func the number of cycles is 10
For n=10 of func + func the number of cycles is 1023
For n=11 of 2*func the number of cycles is 11
For n=11 of func + func the number of cycles is 2047
For n=12 of 2*func the number of cycles is 12
For n=12 of func + func the number of cycles is 4095
For n=13 of 2*func the number of cycles is 13
For n=13 of func + func the number of cycles is 8191
For n=14 of 2*func the number of cycles is 14
For n=14 of func + func the number of cycles is 16383
For n=15 of 2*func the number of cycles is 15
For n=15 of func + func the number of cycles is 32767
For n=16 of 2*func the number of cycles is 16
For n=16 of func + func the number of cycles is 65535
For n=17 of 2*func the number of cycles is 17
For n=17 of func + func the number of cycles is 131071
For n=18 of 2*func the number of cycles is 18
For n=18 of func + func the number of cycles is 262143
For n=19 of 2*func the number of cycles is 19
For n=19 of func + func the number of cycles is 524287
Ama zaten hesaplanan sonuçlar hatırlarsanız, karmaşıklık bile ikinci yaklaşım ile hala O(n)
geçerli:
public class Complexity {
private static int counter;
private static int[] results;
public static void main(String[] args) {
for (int i = 0; i < 20; i++) {
counter = 0;
func(i);
System.out.println("For n="+i+" of 2*func the number of cycles is " + counter);
counter = 0;
func2(i);
System.out.println("For n="+i+" of func + func the number of cycles is " + counter);
counter = 0;
results = new int[i+1];
func3(i);
System.out.println("For n="+i+" of func + func with remembering the number of cycles is " + counter);
}
}
public static int func(int n) {
counter++;
if (n == 0) {
return 1;
}
if (n == 1) {
return 2;
}
return 2 * func(n - 1);
}
public static int func2(int n) {
counter++;
if (n == 0) {
return 1;
}
if (n == 1) {
return 2;
}
return func2(n - 1) + func2(n - 1);
}
public static int func3(int n) {
counter++;
if (n == 0) {
return 1;
}
if (n == 1) {
return 2;
}
if (results[n] == 0){
results[n] = func3(n - 1) + func3(n - 1);
}
return results[n];
}
}
bu çıktıyı Having:
For n=0 of 2*func the number of cycles is 1
For n=0 of func + func the number of cycles is 1
For n=0 of func + func with remembering the number of cycles is 1
For n=1 of 2*func the number of cycles is 1
For n=1 of func + func the number of cycles is 1
For n=1 of func + func with remembering the number of cycles is 1
For n=2 of 2*func the number of cycles is 2
For n=2 of func + func the number of cycles is 3
For n=2 of func + func with remembering the number of cycles is 3
For n=3 of 2*func the number of cycles is 3
For n=3 of func + func the number of cycles is 7
For n=3 of func + func with remembering the number of cycles is 5
For n=4 of 2*func the number of cycles is 4
For n=4 of func + func the number of cycles is 15
For n=4 of func + func with remembering the number of cycles is 7
For n=5 of 2*func the number of cycles is 5
For n=5 of func + func the number of cycles is 31
For n=5 of func + func with remembering the number of cycles is 9
For n=6 of 2*func the number of cycles is 6
For n=6 of func + func the number of cycles is 63
For n=6 of func + func with remembering the number of cycles is 11
For n=7 of 2*func the number of cycles is 7
For n=7 of func + func the number of cycles is 127
For n=7 of func + func with remembering the number of cycles is 13
For n=8 of 2*func the number of cycles is 8
For n=8 of func + func the number of cycles is 255
For n=8 of func + func with remembering the number of cycles is 15
For n=9 of 2*func the number of cycles is 9
For n=9 of func + func the number of cycles is 511
For n=9 of func + func with remembering the number of cycles is 17
For n=10 of 2*func the number of cycles is 10
For n=10 of func + func the number of cycles is 1023
For n=10 of func + func with remembering the number of cycles is 19
For n=11 of 2*func the number of cycles is 11
For n=11 of func + func the number of cycles is 2047
For n=11 of func + func with remembering the number of cycles is 21
For n=12 of 2*func the number of cycles is 12
For n=12 of func + func the number of cycles is 4095
For n=12 of func + func with remembering the number of cycles is 23
For n=13 of 2*func the number of cycles is 13
For n=13 of func + func the number of cycles is 8191
For n=13 of func + func with remembering the number of cycles is 25
For n=14 of 2*func the number of cycles is 14
For n=14 of func + func the number of cycles is 16383
For n=14 of func + func with remembering the number of cycles is 27
For n=15 of 2*func the number of cycles is 15
For n=15 of func + func the number of cycles is 32767
For n=15 of func + func with remembering the number of cycles is 29
For n=16 of 2*func the number of cycles is 16
For n=16 of func + func the number of cycles is 65535
For n=16 of func + func with remembering the number of cycles is 31
For n=17 of 2*func the number of cycles is 17
For n=17 of func + func the number of cycles is 131071
For n=17 of func + func with remembering the number of cycles is 33
For n=18 of 2*func the number of cycles is 18
For n=18 of func + func the number of cycles is 262143
For n=18 of func + func with remembering the number of cycles is 35
For n=19 of 2*func the number of cycles is 19
For n=19 of func + func the number of cycles is 524287
For n=19 of func + func with remembering the number of cycles is 37
Bu yüzden, func (n-1) + func (n-1) 'nin yinelemeli çağrısının O (2^n) karmaşıklığında çalıştığından haklıymışım? Ayrıca, özü formülümde, kağıda yazdığımda ve hesapladığımda, her ikisinin de aynı zaman karmaşıklığına sahip olduklarını nasıl anlarım? – Tom
@ Tom - evet, formülünüzle ilgili karmaşıklığı (O) (2^n) ... çalıştırıyorsunuz - yanlış kullanıyorsunuz veya yanlış formülünüz var. Sorunuza bu formülü gönderin ve belki neyin yanlış olduğunu söyleyebiliriz. – libik
Formülüm: T (n) = 2T (n-1) iken T (0) = 1, T (1) = 2. "Gönderme yöntemini" kullandım ve genel işleve girdim: T (n) = 2^i * T (ni). i = n-1 veya i = n-2 gibi durma durumlarımı post-up ettikten sonra, T (n) = 2^(n-1) * T (1) = (2^n)/2'nin karmaşıklığına eriştim. ------> O (2^n). diğer durma koşulu için aynı sonuç. Her iki tür kod için de aynı formülü aldığım için neyi yanlış yapıyorum. – Tom