2017-01-18 20 views

cevap

8

pandas cevap

  • kullanım query atamak sonucun endeksi kullanan
  • % 10'unu almaya sadece value == 1
  • kullanım sample(frac=.1) ile df süzülür almak için sıfır

df.loc[ 
    df.query('value == 1').sample(frac=.1).index, 
    'value' 
] = 0 

alternatif numpy cevap

  • df['value']1
  • 10% sıfır ve% 90 olanlar
rasgele dizi tayin olduğu boole dizi almak
v = df.value.values == 1 
df.loc[v, 'value'] = np.random.choice((0, 1), v.sum(), p=(.1, .9)) 
+0

'query 'işlevi haline geliyorsunuz sponsor :-) – Boud

+0

@Boud Belirli bir özelliğe odaklanma ve onunla birçok soruya yanıt verme eğilimindeyim. – piRSquared

2

muhtemelen numpy.random.choice kullanabilirsiniz:

İşte
>>> idx = df.index[df.value==1] 
>>> df.loc[np.random.choice(idx, size=idx.size/10, replace=False)].value = 0 
+0

OP rastgele sadece '1' satırları, tüm df – EdChum

+0

yep rastgele bir örnek yerine istiyor, cevap değiştirmek için gidiyorum –

2

np.random.choice ile NumPy yaklaşım -

a = df.value.values # get a view into value col 
idx = np.flatnonzero(a) # get the nonzero indices 

# Finally select unique 10% from those indices and set 0s there 
a[np.random.choice(idx,size=int(0.1*len(idx)),replace=0)] = 0 

Numune vadede -

In [237]: df = pd.DataFrame(np.random.randint(0,2,(100,2)),columns=['id','value']) 

In [238]: (df.value==1).sum() # Original Count of 1s in df.value column 
Out[238]: 53 

In [239]: a = df.value.values 

In [240]: idx = np.flatnonzero(a) 

In [241]: a[np.random.choice(idx,size=int(0.1*len(idx)),replace=0)] = 0 

In [242]: (df.value==1).sum() # New count of 1s in df.value column 
Out[242]: 48 

Alternatif biraz daha pandalar yaklaşım -

idx = np.flatnonzero(df['value']) 
df.ix[np.random.choice(idx,size=int(0.1*len(idx)),replace=0),'value'] = 0 

Süre testi

Tüm yaklaşımlar şimdiye kadar gönderdi -

def f1(df): #@piRSquared's soln1 
    df.loc[df.query('value == 1').sample(frac=.1).index,'value'] = 0 

def f2(df): #@piRSquared's soln2 
    v = df.value.values == 1 
    df.loc[v, 'value'] = np.random.choice((0, 1), v.sum(), p=(.1, .9)) 

def f3(df): #@Roman Pekar's soln 
    idx = df.index[df.value==1] 
    df.loc[np.random.choice(idx, size=idx.size/10, replace=False)].value = 0 

def f4(df): #@Mine soln1 
    a = df.value.values 
    idx = np.flatnonzero(a) 
    a[np.random.choice(idx,size=int(0.1*len(idx)),replace=0)] = 0 

def f5(df): #@Mine soln2 
    idx = np.flatnonzero(df['value']) 
    df.ix[np.random.choice(idx,size=int(0.1*len(idx)),replace=0),'value'] = 0 

Zamanlamalarını -

In [2]: # Setup inputs 
    ...: df = pd.DataFrame(np.random.randint(0,2,(10000,2)),columns=['id','value']) 
    ...: df1 = df.copy() 
    ...: df2 = df.copy() 
    ...: df3 = df.copy() 
    ...: df4 = df.copy() 
    ...: df5 = df.copy() 
    ...: 

In [3]: # Timings 
    ...: %timeit f1(df1) 
    ...: %timeit f2(df2) 
    ...: %timeit f3(df3) 
    ...: %timeit f4(df4) 
    ...: %timeit f5(df5) 
    ...: 
100 loops, best of 3: 3.96 ms per loop 
1000 loops, best of 3: 844 µs per loop 
1000 loops, best of 3: 1.62 ms per loop 
10000 loops, best of 3: 163 µs per loop 
1000 loops, best of 3: 663 µs per loop