Ben sadece çok kolay bir işlev öğrenmek için bir ağ eğitmek için, Keras ile pratik için çalışıyoruz. Ağın girişi 2Dimensional'dur. Çıktı tek boyutlu'dur. Fonksiyon gerçekten bir görüntü ile temsil edilebilir ve aynı fonksiyon yaklaşık aynıdır. Şu anda iyi bir genelleme aramıyorum, sadece ağın eğitim setini temsil etmede en azından iyi olmasını istiyorum. Gördüğünüz gibiKeras ile basit bir regresyon düzgün çalışmıyor
import matplotlib.pyplot as plt
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
import random as rnd
import math
m = [
[1,1,1,1,0,0,0,0,1,1],
[1,1,0,0,0,0,0,0,1,1],
[1,0,0,0,1,1,0,1,0,0],
[1,0,0,1,0,0,0,0,0,0],
[0,0,0,0,1,1,0,0,0,0],
[0,0,0,0,1,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,1],
[0,0,1,0,1,1,0,0,0,1],
[1,1,0,0,0,0,0,0,1,1],
[1,1,0,0,0,0,1,1,1,1]] #A representation of the function that I would like to approximize
matrix = np.matrix(m)
evaluation = np.zeros((100,100))
x_train = np.zeros((10000,2))
y_train = np.zeros((10000,1))
for x in range(0,100):
for y in range(0,100):
x_train[x+100*y,0] = x/100. #I normilize the input of the function, between [0,1)
x_train[x+100*y,1] = y/100.
y_train[x+100*y,0] = matrix[int(x/10),int(y/10)] +0.0
#Here I show graphically what I would like to have
plt.matshow(matrix, interpolation='nearest', cmap=plt.cm.ocean, extent=(0,1,0,1))
#Here I built the model
model = Sequential()
model.add(Dense(20, input_dim=2, init='uniform'))
model.add(Activation('tanh'))
model.add(Dense(1, init='uniform'))
model.add(Activation('sigmoid'))
#Here I train it
sgd = SGD(lr=0.5)
model.compile(loss='mean_squared_error', optimizer=sgd)
model.fit(x_train, y_train,
nb_epoch=100,
batch_size=100,
show_accuracy=True)
#Here (I'm not sure), I'm using the network over the given example
x = model.predict(x_train,batch_size=1)
#Here I show the approximated function
print x
print x_train
for i in range(0, 10000):
evaluation[int(x_train[i,0]*100),int(x_train[i,1]*100)] = x[i]
plt.matshow(evaluation, interpolation='nearest', cmap=plt.cm.ocean, extent=(0,1,0,1))
plt.colorbar()
plt.show()
, iki fonksiyon tamamen farklıdır ve sebebini anlayamıyorum: İşte benim kodu yerleştirebilirsiniz. Belki de model.predict, aksanlı çalıştığım gibi çalışmıyor.
Ben iki işlev farklı olduğunu görmüyorum, sen reffering olan eksik bir arsa var gibi görünüyor. –