'de çürümeye rağmen değişmemesine rağmen öğrenme oranımın bir bozunma faktörü belirlesem de değişmemiştir. Öğrenme oranını görmek için bir geri arama ekledim ve her dönemden sonra aynı görünüyor. Neden Bu gayet değişiyorKeras öğrenme oranı SGD
class LearningRatePrinter(Callback):
def init(self):
super(LearningRatePrinter, self).init()
def on_epoch_begin(self, epoch, logs={}):
print('lr:', self.model.optimizer.lr.get_value())
lr_printer = LearningRatePrinter()
model = Sequential()
model.add(Flatten(input_shape = (28, 28)))
model.add(Dense(200, activation = 'tanh'))
model.add(Dropout(0.5))
model.add(Dense(20, activation = 'tanh'))
model.add(Dense(10, activation = 'softmax'))
print('Compiling Model')
sgd = SGD(lr = 0.01, decay = 0.1, momentum = 0.9, nesterov = True)
model.compile(loss = 'categorical_crossentropy', optimizer = sgd)
print('Fitting Data')
model.fit(x_train, y_train, batch_size = 128, nb_epoch = 400, validation_data = (x_test, y_test), callbacks = [lr_printer])
lr: 0.009999999776482582
Epoch 24/400
60000/60000 [==============================] - 0s - loss: 0.7580 - val_loss: 0.6539
lr: 0.009999999776482582
Epoch 25/400
60000/60000 [==============================] - 0s - loss: 0.7573 - val_loss: 0.6521
lr: 0.009999999776482582
Epoch 26/400
60000/60000 [==============================] - 0s - loss: 0.7556 - val_loss: 0.6503
lr: 0.009999999776482582
Epoch 27/400
60000/60000 [==============================] - 0s - loss: 0.7525 - val_loss: 0.6485
lr: 0.009999999776482582
Epoch 28/400
60000/60000 [==============================] - 0s - loss: 0.7502 - val_loss: 0.6469
lr: 0.009999999776482582
Epoch 29/400
60000/60000 [==============================] - 0s - loss: 0.7494 - val_loss: 0.6453
lr: 0.009999999776482582
Epoch 30/400
60000/60000 [==============================] - 0s - loss: 0.7483 - val_loss: 0.6438
lr: 0.009999999776482582
Epoch 31/400