ben bu çalışma kodu var bir saat geçirdikten sonra
Mymodel.py:
import os
import sys
# Path for spark source folder
os.environ['SPARK_HOME']="E:\\Work\\spark\\installtion\\spark"
# Append pyspark to Python Path
sys.path.append("E:\\Work\\spark\\installtion\\spark\\python")
try:
from pyspark.ml.feature import StringIndexer
# $example on$
from numpy import array
from math import sqrt
from pyspark import SparkConf
# $example off$
from pyspark import SparkContext
# $example on$
from pyspark.mllib.clustering import KMeans, KMeansModel
print ("Successfully imported Spark Modules")
except ImportError as e:
sys.exit(1)
if __name__ == "__main__":
sconf = SparkConf().setAppName("KMeansExample").set('spark.sql.warehouse.dir', 'file:///E:/Work/spark/installtion/spark/spark-warehouse/')
sc = SparkContext(conf=sconf) # SparkContext
parsedData = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2)
clusters = KMeans.train(sc.parallelize(parsedData), 2, maxIterations=10,
runs=10, initializationMode="random")
clusters.save(sc, "mymodel") // this will save model to file system
sc.stop()
Bu kod yaratacak Bir küme küme modeli ve dosya sistemi içine kaydedin.
API.py
from flask import jsonify, request, Flask
from sklearn.externals import joblib
import os
import sys
# Path for spark source folder
os.environ['SPARK_HOME']="E:\\Work\\spark\\installtion\\spark"
# Append pyspark to Python Path
sys.path.append("E:\\Work\\spark\\installtion\\spark\\python")
try:
from pyspark.ml.feature import StringIndexer
# $example on$
from numpy import array
from math import sqrt
from pyspark import SparkConf
# $example off$
from pyspark import SparkContext
# $example on$
from pyspark.mllib.clustering import KMeans, KMeansModel
print ("Successfully imported Spark Modules")
except ImportError as e:
sys.exit(1)
app = Flask(__name__)
@app.route('/', methods=['GET'])
def predict():
sconf = SparkConf().setAppName("KMeansExample").set('spark.sql.warehouse.dir', 'file:///E:/Work/spark/installtion/spark/spark-warehouse/')
sc = SparkContext(conf=sconf) # SparkContext
sameModel = KMeansModel.load(sc, "clus") // load from file system
response = sameModel.predict(array([0.0, 0.0])) // pass your data
return jsonify(response)
if __name__ == '__main__':
app.run()
Üstü şişeye yazılmış benim DİNLENME API olduğunu.
Aramayı http://127.0.0.1:5000/ yapın. Yanıtı tarayıcıda görebilirsiniz.
Kıvılcımınızın olması gerektiğine inanıyorum. Söyleyebileceğim tek şey, python'da basit bir dinlenme api'si oluşturabilir ve model dosyasını yükleyebilir ve yanıt gönderebilirsiniz. – Backtrack
Bir çalışma cevabı ekledim – Backtrack