3.3'te, GPU üzerinde yalnızca PETCs SNES kullanarak FEM çözümü için bir grate news - vardı. Ben PETSc için yeni ve bir sorunum var - 3d uzayda bir küre oluşturmak ve ona kuvvetler uygulamak gerekir ... bu yüzden bir 3d FEM (eğer GPU, mümkünse MPI gerekmiyorsa) ihtiyacım var. Ben sağladıkları see the simple example Oysa ben biraz Scarry'nin olsun:PETSc Ölçeklendirilebilir Nonlineer Denklem Çözücüler ile 3d FEM çözücü nasıl ayarlanır?
static const char help[] = "Testbed for FEM operations on the GPU.\n\n";
#include<petscdmplex.h>
#include<petscsnes.h>
#define NUM_FIELDS 1
PetscInt spatialDim = 0;
typedef enum {LAPLACIAN = 0, ELASTICITY} OpType;
typedef struct {
PetscFEM fem; /* REQUIRED to use DMPlexComputeResidualFEM() */
DM dm; /* The solution DM */
PetscInt debug; /* The debugging level */
PetscMPIInt rank; /* The process rank */
PetscMPIInt numProcs; /* The number of processes */
PetscInt dim; /* The topological mesh dimension */
PetscBool interpolate; /* Generate intermediate mesh elements */
PetscReal refinementLimit; /* The largest allowable cell volume */
PetscBool refinementUniform; /* Uniformly refine the mesh */
PetscInt refinementRounds; /* The number of uniform refinements */
char partitioner[2048]; /* The graph partitioner */
PetscBool computeFunction; /* The flag for computing a residual */
PetscBool computeJacobian; /* The flag for computing a Jacobian */
PetscBool gpu; /* The flag for GPU integration */
OpType op; /* The type of PDE operator (should use FFC/Ignition here) */
PetscBool showResidual, showJacobian;
PetscLogEvent createMeshEvent, residualEvent, residualBatchEvent, jacobianEvent, jacobianBatchEvent, integrateBatchCPUEvent, integrateBatchGPUEvent, integrateGPUOnlyEvent;
/* Element definition */
PetscFE fe[NUM_FIELDS];
PetscFE feAux[1];
void (*f0Funcs[NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f0[]);
void (*f1Funcs[NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f1[]);
void (*g0Funcs[NUM_FIELDS*NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g0[]);
void (*g1Funcs[NUM_FIELDS*NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g1[]);
void (*g2Funcs[NUM_FIELDS*NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g2[]);
void (*g3Funcs[NUM_FIELDS*NUM_FIELDS])(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g3[]);
void (**exactFuncs)(const PetscReal x[], PetscScalar *u, void *ctx);
} AppCtx;
void quadratic_2d(const PetscReal x[], PetscScalar u[], void *ctx)
{
u[0] = x[0]*x[0] + x[1]*x[1];
};
void quadratic_2d_elas(const PetscReal x[], PetscScalar u[], void *ctx)
{
u[0] = x[0]*x[0] + x[1]*x[1];
u[1] = x[0]*x[0] + x[1]*x[1];
};
void f0_lap(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f0[])
{
f0[0] = 4.0;
}
/* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
void f1_lap(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f1[])
{
PetscInt d;
for (d = 0; d < spatialDim; ++d) {f1[d] = a[0]*gradU[d];}
}
/* < \nabla v, \nabla u + {\nabla u}^T >
This just gives \nabla u, give the perdiagonal for the transpose */
void g3_lap(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g3[])
{
PetscInt d;
for (d = 0; d < spatialDim; ++d) {g3[d*spatialDim+d] = 1.0;}
}
void f0_elas(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f0[])
{
const PetscInt Ncomp = spatialDim;
PetscInt comp;
for (comp = 0; comp < Ncomp; ++comp) f0[comp] = 3.0;
}
/* gradU[comp*dim+d] = {u_x, u_y, v_x, v_y} or {u_x, u_y, u_z, v_x, v_y, v_z, w_x, w_y, w_z}
u[Ncomp] = {p} */
void f1_elas(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar f1[])
{
const PetscInt dim = spatialDim;
const PetscInt Ncomp = spatialDim;
PetscInt comp, d;
for (comp = 0; comp < Ncomp; ++comp) {
for (d = 0; d < dim; ++d) {
f1[comp*dim+d] = 0.5*(gradU[comp*dim+d] + gradU[d*dim+comp]);
}
f1[comp*dim+comp] -= u[Ncomp];
}
}
/* < \nabla v, \nabla u + {\nabla u}^T >
This just gives \nabla u, give the perdiagonal for the transpose */
void g3_elas(const PetscScalar u[], const PetscScalar gradU[], const PetscScalar a[], const PetscScalar gradA[], const PetscReal x[], PetscScalar g3[])
{
const PetscInt dim = spatialDim;
const PetscInt Ncomp = spatialDim;
PetscInt compI, d;
for (compI = 0; compI < Ncomp; ++compI) {
for (d = 0; d < dim; ++d) {
g3[((compI*Ncomp+compI)*dim+d)*dim+d] = 1.0;
}
}
}
#undef __FUNCT__
#define __FUNCT__ "ProcessOptions"
PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
{
const char *opTypes[2] = {"laplacian", "elasticity"};
PetscInt op;
PetscErrorCode ierr;
PetscFunctionBeginUser;
options->debug = 0;
options->dim = 2;
options->interpolate = PETSC_FALSE;
options->refinementLimit = 0.0;
options->refinementUniform = PETSC_FALSE;
options->refinementRounds = 1;
options->computeFunction = PETSC_FALSE;
options->computeJacobian = PETSC_FALSE;
options->gpu = PETSC_FALSE;
options->op = LAPLACIAN;
options->showResidual = PETSC_TRUE;
options->showJacobian = PETSC_TRUE;
ierr = MPI_Comm_size(comm, &options->numProcs);CHKERRQ(ierr);
ierr = MPI_Comm_rank(comm, &options->rank);CHKERRQ(ierr);
ierr = PetscOptionsBegin(comm, "", "Bratu Problem Options", "DMPLEX");CHKERRQ(ierr);
ierr = PetscOptionsInt("-debug", "The debugging level", "ex52.c", options->debug, &options->debug, NULL);CHKERRQ(ierr);
ierr = PetscOptionsInt("-dim", "The topological mesh dimension", "ex52.c", options->dim, &options->dim, NULL);CHKERRQ(ierr);
spatialDim = options->dim;
ierr = PetscOptionsBool("-interpolate", "Generate intermediate mesh elements", "ex52.c", options->interpolate, &options->interpolate, NULL);CHKERRQ(ierr);
ierr = PetscOptionsReal("-refinement_limit", "The largest allowable cell volume", "ex52.c", options->refinementLimit, &options->refinementLimit, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-refinement_uniform", "Uniformly refine the mesh", "ex52.c", options->refinementUniform, &options->refinementUniform, NULL);CHKERRQ(ierr);
ierr = PetscOptionsInt("-refinement_rounds", "The number of uniform refinements", "ex52.c", options->refinementRounds, &options->refinementRounds, NULL);CHKERRQ(ierr);
ierr = PetscStrcpy(options->partitioner, "chaco");CHKERRQ(ierr);
ierr = PetscOptionsString("-partitioner", "The graph partitioner", "ex52.c", options->partitioner, options->partitioner, 2048, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-compute_function", "Compute the residual", "ex52.c", options->computeFunction, &options->computeFunction, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-compute_jacobian", "Compute the Jacobian", "ex52.c", options->computeJacobian, &options->computeJacobian, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-gpu", "Use the GPU for integration method", "ex52.c", options->gpu, &options->gpu, NULL);CHKERRQ(ierr);
op = options->op;
ierr = PetscOptionsEList("-op_type","Type of PDE operator","ex52.c",opTypes,2,opTypes[options->op],&op,NULL);CHKERRQ(ierr);
options->op = (OpType) op;
ierr = PetscOptionsBool("-show_residual", "Output the residual for verification", "ex52.c", options->showResidual, &options->showResidual, NULL);CHKERRQ(ierr);
ierr = PetscOptionsBool("-show_jacobian", "Output the Jacobian for verification", "ex52.c", options->showJacobian, &options->showJacobian, NULL);CHKERRQ(ierr);
ierr = PetscOptionsEnd();
ierr = PetscLogEventRegister("CreateMesh", DM_CLASSID, &options->createMeshEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("Residual", SNES_CLASSID, &options->residualEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("ResidualBatch", SNES_CLASSID, &options->residualBatchEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("Jacobian", SNES_CLASSID, &options->jacobianEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("JacobianBatch", SNES_CLASSID, &options->jacobianBatchEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("IntegBatchCPU", SNES_CLASSID, &options->integrateBatchCPUEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("IntegBatchGPU", SNES_CLASSID, &options->integrateBatchGPUEvent);CHKERRQ(ierr);
ierr = PetscLogEventRegister("IntegGPUOnly", SNES_CLASSID, &options->integrateGPUOnlyEvent);CHKERRQ(ierr);
PetscFunctionReturn(0);
};
#undef __FUNCT__
#define __FUNCT__ "CreateMesh"
PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm)
{
PetscInt dim = user->dim;
PetscBool interpolate = user->interpolate;
PetscReal refinementLimit = user->refinementLimit;
PetscBool refinementUniform = user->refinementUniform;
PetscInt refinementRounds = user->refinementRounds;
const char *partitioner = user->partitioner;
PetscErrorCode ierr;
PetscFunctionBeginUser;
ierr = PetscLogEventBegin(user->createMeshEvent,0,0,0,0);CHKERRQ(ierr);
ierr = DMPlexCreateBoxMesh(comm, dim, interpolate, dm);CHKERRQ(ierr);
{
DM refinedMesh = NULL;
DM distributedMesh = NULL;
/* Refine mesh using a volume constraint */
ierr = DMPlexSetRefinementLimit(*dm, refinementLimit);CHKERRQ(ierr);
ierr = DMRefine(*dm, comm, &refinedMesh);CHKERRQ(ierr);
if (refinedMesh) {
ierr = DMDestroy(dm);CHKERRQ(ierr);
*dm = refinedMesh;
}
/* Distribute mesh over processes */
ierr = DMPlexDistribute(*dm, partitioner, 0, NULL, &distributedMesh);CHKERRQ(ierr);
if (distributedMesh) {
ierr = DMDestroy(dm);CHKERRQ(ierr);
*dm = distributedMesh;
}
/* Use regular refinement in parallel */
if (refinementUniform) {
PetscInt r;
ierr = DMPlexSetRefinementUniform(*dm, refinementUniform);CHKERRQ(ierr);
for (r = 0; r < refinementRounds; ++r) {
ierr = DMRefine(*dm, comm, &refinedMesh);CHKERRQ(ierr);
if (refinedMesh) {
ierr = DMDestroy(dm);CHKERRQ(ierr);
*dm = refinedMesh;
}
}
}
}
ierr = PetscObjectSetName((PetscObject) *dm, "Mesh");CHKERRQ(ierr);
ierr = DMSetFromOptions(*dm);CHKERRQ(ierr);
ierr = PetscLogEventEnd(user->createMeshEvent,0,0,0,0);CHKERRQ(ierr);
user->dm = *dm;
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "SetupElement"
PetscErrorCode SetupElement(DM dm, AppCtx *user)
{
const PetscInt dim = user->dim;
PetscFE fem;
PetscQuadrature q;
DM K;
PetscSpace P;
PetscDualSpace Q;
PetscInt order;
PetscErrorCode ierr;
PetscFunctionBegin;
/* Create space */
ierr = PetscSpaceCreate(PetscObjectComm((PetscObject) dm), &P);CHKERRQ(ierr);
ierr = PetscSpaceSetFromOptions(P);CHKERRQ(ierr);
ierr = PetscSpacePolynomialSetNumVariables(P, dim);CHKERRQ(ierr);
ierr = PetscSpaceSetUp(P);CHKERRQ(ierr);
ierr = PetscSpaceGetOrder(P, &order);CHKERRQ(ierr);
/* Create dual space */
ierr = PetscDualSpaceCreate(PetscObjectComm((PetscObject) dm), &Q);CHKERRQ(ierr);
ierr = PetscDualSpaceCreateReferenceCell(Q, dim, PETSC_TRUE, &K);CHKERRQ(ierr);
ierr = PetscDualSpaceSetDM(Q, K);CHKERRQ(ierr);
ierr = DMDestroy(&K);CHKERRQ(ierr);
ierr = PetscDualSpaceSetOrder(Q, order);CHKERRQ(ierr);
ierr = PetscDualSpaceSetFromOptions(Q);CHKERRQ(ierr);
ierr = PetscDualSpaceSetUp(Q);CHKERRQ(ierr);
/* Create element */
ierr = PetscFECreate(PetscObjectComm((PetscObject) dm), &fem);CHKERRQ(ierr);
ierr = PetscFESetFromOptions(fem);CHKERRQ(ierr);
ierr = PetscFESetBasisSpace(fem, P);CHKERRQ(ierr);
ierr = PetscFESetDualSpace(fem, Q);CHKERRQ(ierr);
ierr = PetscFESetNumComponents(fem, 1);CHKERRQ(ierr);
ierr = PetscFESetUp(fem);CHKERRQ(ierr);
ierr = PetscSpaceDestroy(&P);CHKERRQ(ierr);
ierr = PetscDualSpaceDestroy(&Q);CHKERRQ(ierr);
/* Create quadrature */
ierr = PetscDTGaussJacobiQuadrature(dim, order, -1.0, 1.0, &q);CHKERRQ(ierr);
ierr = PetscFESetQuadrature(fem, q);CHKERRQ(ierr);
ierr = PetscQuadratureDestroy(&q);CHKERRQ(ierr);
user->fe[0] = fem;
user->fem.fe = user->fe;
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "SetupMaterialElement"
PetscErrorCode SetupMaterialElement(DM dm, AppCtx *user)
{
const PetscInt dim = user->dim;
const char *prefix = "mat_";
PetscFE fem;
PetscQuadrature q;
DM K;
PetscSpace P;
PetscDualSpace Q;
PetscInt order;
PetscErrorCode ierr;
PetscFunctionBegin;
/* Create space */
ierr = PetscSpaceCreate(PetscObjectComm((PetscObject) dm), &P);CHKERRQ(ierr);
ierr = PetscObjectSetOptionsPrefix((PetscObject) P, prefix);CHKERRQ(ierr);
ierr = PetscSpaceSetFromOptions(P);CHKERRQ(ierr);
ierr = PetscSpacePolynomialSetNumVariables(P, dim);CHKERRQ(ierr);
ierr = PetscSpaceSetUp(P);CHKERRQ(ierr);
ierr = PetscSpaceGetOrder(P, &order);CHKERRQ(ierr);
/* Create dual space */
ierr = PetscDualSpaceCreate(PetscObjectComm((PetscObject) dm), &Q);CHKERRQ(ierr);
ierr = PetscObjectSetOptionsPrefix((PetscObject) Q, prefix);CHKERRQ(ierr);
ierr = PetscDualSpaceCreateReferenceCell(Q, dim, PETSC_TRUE, &K);CHKERRQ(ierr);
ierr = PetscDualSpaceSetDM(Q, K);CHKERRQ(ierr);
ierr = DMDestroy(&K);CHKERRQ(ierr);
ierr = PetscDualSpaceSetOrder(Q, order);CHKERRQ(ierr);
ierr = PetscDualSpaceSetFromOptions(Q);CHKERRQ(ierr);
ierr = PetscDualSpaceSetUp(Q);CHKERRQ(ierr);
/* Create element */
ierr = PetscFECreate(PetscObjectComm((PetscObject) dm), &fem);CHKERRQ(ierr);
ierr = PetscObjectSetOptionsPrefix((PetscObject) fem, prefix);CHKERRQ(ierr);
ierr = PetscFESetFromOptions(fem);CHKERRQ(ierr);
ierr = PetscFESetBasisSpace(fem, P);CHKERRQ(ierr);
ierr = PetscFESetDualSpace(fem, Q);CHKERRQ(ierr);
ierr = PetscFESetNumComponents(fem, 1);CHKERRQ(ierr);
ierr = PetscSpaceDestroy(&P);CHKERRQ(ierr);
ierr = PetscDualSpaceDestroy(&Q);CHKERRQ(ierr);
/* Create quadrature */
ierr = PetscDTGaussJacobiQuadrature(dim, PetscMax(order, 1), -1.0, 1.0, &q);CHKERRQ(ierr);
ierr = PetscFESetQuadrature(fem, q);CHKERRQ(ierr);
user->feAux[0] = fem;
user->fem.feAux = user->feAux;
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "DestroyElement"
PetscErrorCode DestroyElement(AppCtx *user)
{
PetscErrorCode ierr;
PetscFunctionBeginUser;
ierr = PetscFEDestroy(&user->fe[0]);CHKERRQ(ierr);
ierr = PetscFEDestroy(&user->feAux[0]);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "SetupSection"
PetscErrorCode SetupSection(DM dm, AppCtx *user)
{
PetscSection section;
PetscInt dim = user->dim;
PetscInt numBC = 0;
PetscInt numComp[1];
const PetscInt *numDof;
PetscErrorCode ierr;
PetscFunctionBeginUser;
ierr = PetscFEGetNumComponents(user->fe[0], &numComp[0]);CHKERRQ(ierr);
ierr = PetscFEGetNumDof(user->fe[0], &numDof);CHKERRQ(ierr);
ierr = DMPlexCreateSection(dm, dim, 1, numComp, numDof, numBC, NULL, NULL, NULL, §ion);CHKERRQ(ierr);
ierr = DMSetDefaultSection(dm, section);CHKERRQ(ierr);
ierr = PetscSectionDestroy(§ion);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "SetupMaterial"
PetscErrorCode SetupMaterial(DM dm, DM dmAux, AppCtx *user)
{
Vec epsilon;
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = DMCreateLocalVector(dmAux, &epsilon);CHKERRQ(ierr);
ierr = VecSet(epsilon, 1.0);CHKERRQ(ierr);
ierr = PetscObjectCompose((PetscObject) dm, "A", (PetscObject) epsilon);CHKERRQ(ierr);
ierr = VecDestroy(&epsilon);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc, char **argv)
{
DM dm, dmAux;
SNES snes;
AppCtx user;
PetscInt numComp;
PetscErrorCode ierr;
ierr = PetscInitialize(&argc, &argv, NULL, help);CHKERRQ(ierr);
#if !defined(PETSC_HAVE_CUDA) && !defined(PETSC_HAVE_OPENCL)
SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_SUP, "This example requires CUDA or OpenCL support.");
#endif
ierr = ProcessOptions(PETSC_COMM_WORLD, &user);CHKERRQ(ierr);
ierr = SNESCreate(PETSC_COMM_WORLD, &snes);CHKERRQ(ierr);
ierr = CreateMesh(PETSC_COMM_WORLD, &user, &dm);CHKERRQ(ierr);
ierr = SNESSetDM(snes, dm);CHKERRQ(ierr);
ierr = SetupElement(user.dm, &user);CHKERRQ(ierr);
ierr = DMClone(user.dm, &dmAux);CHKERRQ(ierr);
ierr = PetscObjectCompose((PetscObject) dm, "dmAux", (PetscObject) dmAux);CHKERRQ(ierr);
ierr = SetupMaterialElement(dmAux, &user);CHKERRQ(ierr);
ierr = PetscFEGetNumComponents(user.fe[0], &numComp);CHKERRQ(ierr);
ierr = PetscMalloc(numComp * sizeof(void (*)(const PetscReal[], PetscScalar *, void *)), &user.exactFuncs);CHKERRQ(ierr);
switch (user.op) {
case LAPLACIAN:
user.f0Funcs[0] = f0_lap;
user.f1Funcs[0] = f1_lap;
user.g0Funcs[0] = NULL;
user.g1Funcs[0] = NULL;
user.g2Funcs[0] = NULL;
user.g3Funcs[0] = g3_lap;
user.exactFuncs[0] = quadratic_2d;
break;
case ELASTICITY:
user.f0Funcs[0] = f0_elas;
user.f1Funcs[0] = f1_elas;
user.g0Funcs[0] = NULL;
user.g1Funcs[0] = NULL;
user.g2Funcs[0] = NULL;
user.g3Funcs[0] = g3_elas;
user.exactFuncs[0] = quadratic_2d_elas;
break;
default:
SETERRQ1(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid PDE operator %d", user.op);
}
user.fem.f0Funcs = user.f0Funcs;
user.fem.f1Funcs = user.f1Funcs;
user.fem.g0Funcs = user.g0Funcs;
user.fem.g1Funcs = user.g1Funcs;
user.fem.g2Funcs = user.g2Funcs;
user.fem.g3Funcs = user.g3Funcs;
user.fem.bcFuncs = user.exactFuncs;
user.fem.bcCtxs = NULL;
ierr = SetupSection(dm, &user);CHKERRQ(ierr);
ierr = SetupSection(dmAux, &user);CHKERRQ(ierr);
ierr = SetupMaterial(dm, dmAux, &user);CHKERRQ(ierr);
ierr = DMSNESSetFunctionLocal(dm, (PetscErrorCode (*)(DM,Vec,Vec,void*))DMPlexComputeResidualFEM,&user);CHKERRQ(ierr);
ierr = DMSNESSetJacobianLocal(dm, (PetscErrorCode (*)(DM,Vec,Mat,Mat,void*))DMPlexComputeJacobianFEM,&user);CHKERRQ(ierr);
if (user.computeFunction) {
Vec X, F;
ierr = DMGetGlobalVector(dm, &X);CHKERRQ(ierr);
ierr = DMGetGlobalVector(dm, &F);CHKERRQ(ierr);
ierr = DMPlexProjectFunction(dm, user.fe, user.exactFuncs, NULL, INSERT_VALUES, X);CHKERRQ(ierr);
ierr = SNESComputeFunction(snes, X, F);CHKERRQ(ierr);
ierr = DMRestoreGlobalVector(dm, &X);CHKERRQ(ierr);
ierr = DMRestoreGlobalVector(dm, &F);CHKERRQ(ierr);
}
if (user.computeJacobian) {
Vec X;
Mat J;
ierr = DMGetGlobalVector(dm, &X);CHKERRQ(ierr);
ierr = DMSetMatType(dm,MATAIJ);CHKERRQ(ierr);
ierr = DMCreateMatrix(dm, &J);CHKERRQ(ierr);
ierr = SNESComputeJacobian(snes, X, J, J);CHKERRQ(ierr);
ierr = MatDestroy(&J);CHKERRQ(ierr);
ierr = DMRestoreGlobalVector(dm, &X);CHKERRQ(ierr);
}
ierr = PetscFree(user.exactFuncs);CHKERRQ(ierr);
ierr = DestroyElement(&user);CHKERRQ(ierr);
ierr = DMDestroy(&dmAux);CHKERRQ(ierr);
ierr = DMDestroy(&dm);CHKERRQ(ierr);
ierr = SNESDestroy(&snes);CHKERRQ(ierr);
ierr = PetscFinalize();
return 0;
}
Temiz ve kodu gibi okunabilir C ...
Oysa okuma benim başımı ake yapar çünkü mermi gelen phisix \ GameDev backgrownd ben 3 ana şey görmüyorum: boyutlar belirlendiğinde, bir kafes oluşturulur ve kuvvetler uygulanır?
Herhangi biri, lütfen PETSC SNES ile bir 3D FEM çözücünün nasıl kurulacağını açıklayabilir (boyutların nasıl ayarlanacağının, bir ağın beslenmesinin, kuvvetlerin nasıl uygulanacağının ve sonuçların nasıl yorumlanacağının nasıl anlaşılacağını)?
BTW onlar 'petscdmplex' içinde henüz örnekte kullanılan PetscFEM' var ne de 'petscsnes' bulamıyorum ...( – DuckQueen
Lütfen spam etiketlemeyin, bu C sorumlusudur ve etiketlenmemelidir C++ – Mgetz