Yuvalanmış düzeydeki bir yapıya alanları nasıl ekleyebilir veya değiştirebilirim?Spark DataFrame'e iç içe bir sütun ekleme
Bu giriş:
val rdd = sc.parallelize(Seq(
"""{"a": {"xX": 1,"XX": 2},"b": {"z": 0}}""",
"""{"a": {"xX": 3},"b": {"z": 0}}""",
"""{"a": {"XX": 3},"b": {"z": 0}}""",
"""{"a": {"xx": 4},"b": {"z": 0}}"""))
var df = sqlContext.read.json(rdd)
aşağıdaki şemayı verir:
root
|-- a: struct (nullable = true)
| |-- XX: long (nullable = true)
| |-- xX: long (nullable = true)
| |-- xx: long (nullable = true)
|-- b: struct (nullable = true)
| |-- z: long (nullable = true)
Sonra bunu yapabilirsiniz:
import org.apache.spark.sql.functions._
val overlappingNames = Seq(col("a.xx"), col("a.xX"), col("a.XX"))
df = df
.withColumn("a_xx",
coalesce(overlappingNames:_*))
.dropNestedColumn("a.xX")
.dropNestedColumn("a.XX")
.dropNestedColumn("a.xx")
(dropNestedColumn
bu cevap ödünç: https://stackoverflow.com/a/39943812/1068385. Ben temel olarak ters operatiyi arıyorum. . Bunun üzerine)
Ve şema haline gelir:
root
|-- a: struct (nullable = false)
|-- b: struct (nullable = true)
| |-- z: long (nullable = true)
|-- a_xx: long (nullable = true)
Açıkçası yerine (veya ekleme) a.xx
ama bunun yerine kök düzeyinde yeni bir alan a_xx
ekler gelmez.
yerine bunu yapabilmek istiyorum:
val overlappingNames = Seq(col("a.xx"), col("a.xX"), col("a.XX"))
df = df
.withNestedColumn("a.xx",
coalesce(overlappingNames:_*))
.dropNestedColumn("a.xX")
.dropNestedColumn("a.XX")
bu şemada sebep olacağı Yani:
root
|-- a: struct (nullable = false)
| |-- xx: long (nullable = true)
|-- b: struct (nullable = true)
| |-- z: long (nullable = true)
Bunu nasıl başarabiliriz?
Buradaki pratik amaç, JSON girişindeki sütun adlarıyla büyük/küçük harfe duyarlı olmaktır. Son adım basit olurdu: üst üste binen tüm sütun isimlerini toplayın ve her birine birleştirme uygulayın.
object DataFrameUtils {
private def nullableCol(parentCol: Column, c: Column): Column = {
when(parentCol.isNotNull, c)
}
private def nullableCol(c: Column): Column = {
nullableCol(c, c)
}
private def createNestedStructs(splitted: Seq[String], newCol: Column): Column = {
splitted
.foldRight(newCol) {
case (colName, nestedStruct) => nullableCol(struct(nestedStruct as colName))
}
}
private def recursiveAddNestedColumn(splitted: Seq[String], col: Column, colType: DataType, nullable: Boolean, newCol: Column): Column = {
colType match {
case colType: StructType if splitted.nonEmpty => {
var modifiedFields: Seq[(String, Column)] = colType.fields
.map(f => {
var curCol = col.getField(f.name)
if (f.name == splitted.head) {
curCol = recursiveAddNestedColumn(splitted.tail, curCol, f.dataType, f.nullable, newCol)
}
(f.name, curCol as f.name)
})
if (!modifiedFields.exists(_._1 == splitted.head)) {
modifiedFields :+= (splitted.head, nullableCol(col, createNestedStructs(splitted.tail, newCol)) as splitted.head)
}
var modifiedStruct: Column = struct(modifiedFields.map(_._2): _*)
if (nullable) {
modifiedStruct = nullableCol(col, modifiedStruct)
}
modifiedStruct
}
case _ => createNestedStructs(splitted, newCol)
}
}
private def addNestedColumn(df: DataFrame, newColName: String, newCol: Column): DataFrame = {
if (newColName.contains('.')) {
var splitted = newColName.split('.')
val modifiedOrAdded: (String, Column) = df.schema.fields
.find(_.name == splitted.head)
.map(f => (f.name, recursiveAddNestedColumn(splitted.tail, col(f.name), f.dataType, f.nullable, newCol)))
.getOrElse {
(splitted.head, createNestedStructs(splitted.tail, newCol) as splitted.head)
}
df.withColumn(modifiedOrAdded._1, modifiedOrAdded._2)
} else {
// Top level addition, use spark method as-is
df.withColumn(newColName, newCol)
}
}
implicit class ExtendedDataFrame(df: DataFrame) extends Serializable {
/**
* Add nested field to DataFrame
*
* @param newColName Dot-separated nested field name
* @param newCol New column value
*/
def withNestedColumn(newColName: String, newCol: Column): DataFrame = {
DataFrameUtils.addNestedColumn(df, newColName, newCol)
}
}
}
onu geliştirmek için çekinmeyin:
Çözümü elde ettiniz? –
@ShankarKoirala: Spark ile değil. Kovanda istediğimi elde etmek için COALESCE kullanmak çok önemliydi. – Arvidaa