Bir Kıvılcım SQL programı üzerinde çalışıyorum ve aşağıdaki özel durum alıyorum çalışırken:TimeoutException almak için olası nedenleri nelerdir: Vadeli sonra zaman aşımına [n saniye] Spark
16/11/07 15:58:25 ERROR yarn.ApplicationMaster: User class threw exception: java.util.concurrent.TimeoutException: Futures timed out after [3000 seconds]
java.util.concurrent.TimeoutException: Futures timed out after [3000 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:190)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
at scala.concurrent.Await$.result(package.scala:190)
at org.apache.spark.sql.execution.joins.BroadcastHashJoin.doExecute(BroadcastHashJoin.scala:107)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.Project.doExecute(basicOperators.scala:46)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.Union$$anonfun$doExecute$1.apply(basicOperators.scala:144)
at org.apache.spark.sql.execution.Union$$anonfun$doExecute$1.apply(basicOperators.scala:144)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:245)
at scala.collection.immutable.List.map(List.scala:285)
at org.apache.spark.sql.execution.Union.doExecute(basicOperators.scala:144)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.columnar.InMemoryRelation.buildBuffers(InMemoryColumnarTableScan.scala:129)
at org.apache.spark.sql.execution.columnar.InMemoryRelation.<init>(InMemoryColumnarTableScan.scala:118)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$.apply(InMemoryColumnarTableScan.scala:41)
at org.apache.spark.sql.execution.CacheManager$$anonfun$cacheQuery$1.apply(CacheManager.scala:93)
at org.apache.spark.sql.execution.CacheManager.writeLock(CacheManager.scala:60)
at org.apache.spark.sql.execution.CacheManager.cacheQuery(CacheManager.scala:84)
at org.apache.spark.sql.DataFrame.persist(DataFrame.scala:1581)
at org.apache.spark.sql.DataFrame.cache(DataFrame.scala:1590)
at com.somecompany.ml.modeling.NewModel.getTrainingSet(FlowForNewModel.scala:56)
at com.somecompany.ml.modeling.NewModel.generateArtifacts(FlowForNewModel.scala:32)
at com.somecompany.ml.modeling.Flow$class.run(Flow.scala:52)
at com.somecompany.ml.modeling.lowForNewModel.run(FlowForNewModel.scala:15)
at com.somecompany.ml.Main$$anonfun$2.apply(Main.scala:54)
at com.somecompany.ml.Main$$anonfun$2.apply(Main.scala:54)
at scala.Option.getOrElse(Option.scala:121)
at com.somecompany.ml.Main$.main(Main.scala:46)
at com.somecompany.ml.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:542)
16/11/07 15:58:25 INFO yarn.ApplicationMaster: Final app status: FAILED, exitCode: 15, (reason: User class threw exception: java.util.concurrent.TimeoutException: Futures timed out after [3000 seconds])
son Kod izimin yığın izinden tanıdığım parçanın bir kısmı com.somecompany.ml.modeling.NewModel.getTrainingSet(FlowForNewModel.scala:56)
bu satırda beni alır: profilesDF.cache()
Önbelleğe alma işleminden önce 2 veri karesi arasında bir birleşimi yapıyorum. Ben here katılmadan önce hem de veri kareleri ısrar hakkında bir cevap gördüm Ben hala benim dönüşümler
kullanıyorum beri sendikalanan veri alanını önbelleğe ihtiyacım var Ve bu istisna neden olabilir merak ediyordum ? Bunun için arama, bana bir bağlantı için rpc zaman aşımı istisnası ya da benim sorunum değil bazı güvenlik sorunları ile ilgili var Eğer nasıl çözüleceğine dair herhangi bir fikriniz varsa Açıkçası bunu takdir ediyorum ama sadece sorunu anlamak bana yardımcı olacaktır önceden
Teşekkür
Hey, bunu anlatan mı buldunuz?Spark ağı zaman aşımını artırmayı denedim, ancak sorunu çözmedi. İki RDD'imi birleştirdikten sonra yeniden bölümlemeye ihtiyacım olduğunu düşünmeye başladım ama bunu denemek için henüz bir şansım olmadı. Programım küçük veri kümeleriyle çalışır, ancak daha fazla kullanmaya başladığımda kırılır. – frosty
@frosty, cevabımı aşağıda bulabilirsiniz. Yardımcı olabilir – mathieu